Istituto Comprensivo Porto Tolle

  • Increase font size
  • Default font size
  • Decrease font size
Home Geometria con Geogebra

Geometria con GeoGebra - 1° Teorema di Euclide

PDF
Indice
Geometria con GeoGebra
Punti notevoli triangoli
Area del Trapezio
Area del Parallelogramma
Area del Rombo
Teorema di Pitagora
1° Teorema di Euclide
2° Teorema di Euclide
Tutte le pagine

geogebra logo

 

 

 

 

Applicazioni della similitudine dei triangoli: il 1° teorema di Euclide

Un'importante applicazione della similitudine dei triangoli è il primo teorema di Euclide: dato un triangolo rettangolo ABC, tracciata l'altezza relativa all'ipotenusa BH, questa divide il triangolo in due triangoli rettangoli che sono a loro volta rispettivamente simili al triangolo di partenza ABC. Dunque:
- BCH è simile ad ABC da cui si evince che AC:BC=BC:CH ovvero applicando la proprietà fondamentale delle proporzioni si ha: BC²=AC·CH
- BAH è simile ad ABC da cui si evince che AC:AB=AB:AH ovvero applicando la proprietà fondamentale delle proporzioni si ha: AB²=AC·AH
In definitiva: in ogni triangolo rettangolo ciascun cateto è medio proporzionale tra l'ipotenusa e la proiezione del cateto stesso sull'ipotenusa
oppure: in ogni triangolo rettangolo il quadrato costruito su un cateto è equivalente al rettangolo che ha per dimensioni l'ipotenusa e la proiezione di quel cateto sull'ipotenusa.
Questa seconda enunciazione "geometrica" ci permette di costruire la nostra figura con GeoGebra. Osserviamo che dal 1° teorema di Euclide deriva un altro teorema che dovremmo già conoscere benissimo... il teorema di Pitagora!

Suggerimento:  muovi il punto B (per rimanere con il disegno dentro il riquadro).

 

download ggb

Scarica il file originale sul tuo computer e aprilo con GeoGebra : 

primo teorema di Euclide